1. If $f, g : [a, b] \longrightarrow \mathbb{R}$ are continuous functions then $h = \min\{f, g\}$ is also a continuous function.

Solution: For any $a, b \in \mathbb{R}$ we have $\min\{a, b\} = \frac{1}{2} [(a+b) - |a-b|]$. So using this we get

$$h(x) = \frac{1}{2} \left[\left(f(x) + g(x) \right) - \left| f(x) - g(x) \right| \right].$$

Now continuity of f + g and |f - g| will give the continuity of h.

 Let f(x) = a₀+a₁x+a₂x²+····· where a₀, a₁, a₂··· are real numbers. Let {lim sup |a_n|¹/_n}⁻¹ = R₀ (i) Find R₀ when a_n = ¹/_{n!}.
 (ii) Give example of a₀, a₁, a₂··· such that R₀ = 1, for |x| = R₀, the series ∑[∞]_{n=0} a_nxⁿ is divrgent for x = 1 and convergent for x = -1.

Solution: (i) We have the following power series

$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

with $a_n = \frac{1}{n!}$, converges for all $x \in \mathbb{R}$. So we get $R_0 = \infty$. Solution: (ii) Let $a_0 = 0$ and $a_n = -\frac{1}{n}$, $n \ge 1$ then we have

$$\log(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \cdots$$

which converges for $-1 \le x < 1$ and diverges for x = 1.

3. Let $I_1 \supset I_2 \supset \cdots$ be a sequence of closed intervals with length $I_r \longrightarrow 0$ as $r \rightarrow \infty$. If $x_j \in I_j$ then show that the sequence $\{x_1, x_2, x_3, \dots\}$ is a cauchy sequence.

Solution: We have $x_{n+k} \in I_{n+k} \subset I_n$ for any $n \ge 1$ and $k = 1, 2, \cdots$. Thus we get

 $|x_{n+k} - x_n| \leq |I_n|$ as $x_n, x_{n+k} \in I_n$, here $|I_n|$ is length of I_n .

So from above we get $|x_{n+k} - x_n| \to 0$ as $n \to \infty$, for $k = 1, 2, \cdots$. This prove that $\{x_n\}_{n \ge 1}$ is a cauchy sequence.

4. Let x_1, x_2, \cdots be bounded sequence of reals with $x_j \ge 0$. If every subsequence of x_n has a [further] subsequence converging to 0 show that $x_n \to 0$.

Solution: Let assume by that x_n does not convergent to 0. Then there is a $\epsilon > 0$ such that for any $M \in \mathbb{N}$ there is a x_m with $|x_m| \ge \epsilon$ and m > M.

Now chose the subsequence $\{x_{n_k}\}_k$ with $|x_{n_k}| \ge \epsilon$ with $n_k > N_k$ and $N_{K+1} > N_k$. Then this susequence $\{x_{n_k}\}_k$ does not admit any further subsequence which converges to 0. Which give the contradiction. Hence we have $x_n \to 0$.

5. (a) Let $a_n > 0$, $\sum_n a_n^2 < \infty$, $\partial > \frac{1}{2}$. Then show that $\sum_{n=1}^{\infty} \frac{a_n}{n^{\partial}}$ exists. (b) $\mathbb{B} > \frac{1}{2}$. Show that $\sum_n b_n < \infty$ where $b_n = \frac{\sqrt{n+1}-\sqrt{n}}{n^{\mathbb{B}}}$. (c) If |x| < 1 show that $x^n \to 0$ as $n \to \infty$. Solution (a) Let $S_N = \sum_{n=1}^N \frac{a_n}{n^{\partial}}$ then by cauchy schwarz-inequality we have

$$S_N \le \sqrt{\sum_{n=1}^N a_n^2} \sqrt{\sum_{n=1}^N c_n^2} \le \sqrt{\sum_{n=1}^\infty a_n^2} \sqrt{\sum_{n=1}^\infty c_n^2} < \infty \quad \forall \ N,$$

here $c_n = \frac{1}{n^{\vartheta}}$. Since $\partial > \frac{1}{2}$ we have $\sum_{n=1}^{\infty} c_n^2 < \infty$. The above inequality give the existence of $\sum_{n=1}^{\infty} \frac{a_n}{n^{\vartheta}}$.

Solution (b) Consider $c_n = \frac{1}{n^{\mathbb{B}+\frac{1}{2}}}$ then $\sum_{n=1}^{\infty} c_n < \infty$ as $\mathbb{B}+\frac{1}{2} > 1$. It is easy to see that $\lim_{n \to \infty} \frac{b_n}{c_n} = \frac{1}{2}$. Now comparison test will give the converges of $\sum_{n=1}^{\infty} b_n$.

Solution (c) Let $|c_0| < 1$ and $0 < \epsilon < 1$ (it is enough) then we have to find a $N \in \mathbb{N}$ such that $|c_0|^n < \epsilon \quad \forall n > M$. If $|c_0|^n < \epsilon$ then we have $n > \frac{\log \epsilon}{\log c_0}$. So if we take $M = \lfloor \frac{\log \epsilon}{\log c_0} \rfloor + 1$ then we are done.

6. (a) Show that f: R→ R is given by f(x) = x² is not uniformly continuous.
(b) Let f be as in (a). Show that if x₁, x₂, ... is a cauchy sequence then f(x₁), f(x₂), ... is a cauchy sequence.

(c) Give an example of uniformly continuous functions g_1, g_2 such that the product g_1g_2 is not uniformly continuous and prove your claim.

(d) Let $g: J \longrightarrow \mathbb{R}$ be uniformly continuous. Show that if x_1, x_2, \cdots is a cauchy sequence in J then $g(x_1), g(x_2), \cdots$ is a cauchy sequence.

(e) Let $h : (0,1] \longrightarrow \mathbb{R}$ be uniformly continuous. If $y_n \in (0,1]$ and $y_n \to 0$ then $\{h(y_n)\}$ is convergent and the limit is independent of the sequence y_1, y_2, \cdots (converging to 0)

(f) Let $k : J \longrightarrow \mathbb{R}$ be a continuous, differentiable function and the derivative be bounded and continuous. Show that k is uniformly continuous. Here J is a bounded or unbounded interval.

Solution (a) Let $0 < \epsilon < 1$. For any given $\delta > 0$ set $x_1 = \frac{1}{\delta}$ and $x_2 = x_1 + \frac{\delta}{2}$ then $|x_1 - x_2| = \frac{\delta}{2} < \delta$. Now

$$|f(x_1) - f(x_2)| = 1 + \frac{\delta^2}{4} > 1 > \epsilon.$$

The above give that f is not uniformly continuous.

Solution (b) Since $\{x_n\}_n$ is a cauchy sequence so it is bounded, let $|x_n| \leq M \quad \forall n$. Now

$$|f(x_n) - f(x_m)| = |(x_n + x_m)(x_n - x_m)| \le 2M|x_n - x_m|.$$

So $f(x_1), f(x_2), \cdots$ is a cauchy sequence.

Solution (c) Consider $g_1(x) = g_2(x) = x$ is uniformly continuous (take $\epsilon = \delta$). But from (a) we have $g_1g_2(x) = x^2$ is not uniformly continuous.

Solution (d) Since $\{x_n\}_n$ is a cauchy sequence, we have for each $\delta > 0$ there is $M \in \mathbb{N}$ (*M* depends on δ) such that $|x_n - x_m| < \delta$, $\forall n, m > M$. Now uniform continuity of *g* will give

$$|g(x_n) - g(x_m)| < \epsilon \quad \forall \ n, m > M.$$

So $\{g(x_n)\}_n$ is a cauchy sequence.

Solution (e) Since $y_n \to 0$ so $\{y_n\}$ is a cauchy sequence. Now from (d) we have $\{h(y_n)\}$ is also cauchy in \mathbb{R} so it is convergent.

Let $\{x_n\} \in (0,1]$ be a another sequence such that $x_n \to 0$. Set $x = \lim_{n \to \infty} h(x_n)$ and $y = \lim_{n \to \infty} h(y_n)$. Now for any $\delta > 0$ we can find $M \in \mathbb{N}$ such that $|x_n| < \frac{\delta}{2}$ and $|y_n| < \frac{\delta}{2} \forall n \ge M$. Now uniform continuity of h give that, for any $\epsilon > 0$ we have

$$|h(x_n) - h(y_n)| < \epsilon \ as \ |x_n - y_n| \le |x_n| + |y_n| < \delta.$$

Now above will give $|x - y| < \epsilon$ for any $\epsilon > 0$ which imply x = y. So the limit of $\{h(y_n)\}$ is independent of $\{y_n\}$.

Solution (f) Using mean value theorem we have

$$|f(x) - f(y)| \le f'(c)|x - y| \le M|x - y|, \ c \in [x, y] \subset J, \ M = \sup_{u \in J} |f'(u)|.$$

Here we take f is not a constant function. So given $\epsilon > 0$ if we take $\delta = \frac{\epsilon}{M}$ we get

$$|f(x) - f(y)| < \epsilon$$
 whenever $|x - y| < \delta$.

7. If a_1, a_2, \cdots be a sequence of real with $\sum_n |a_n| < \infty$ then $\sum_n a_n$ exists. Solution We have $0 \le a_n + |a_n| \le 2|a_n|$ so $\sum_n (a_n + |a_n|) < \infty$. Now

$$\sum_{n=1}^{N} a_n = \sum_{n=1}^{N} (a_n + |a_n|) - \sum_{n=1}^{N} |a_n|$$

Now $\lim_{N \to \infty} \sum_{n=1}^{N} a_n$ exists as $\lim_{N \to \infty} \sum_{n=1}^{N} (a_n + |a_n|)$ and $\lim_{N \to \infty} \sum_{n=1}^{N} |a_n|$ both exist. \Box

8. Let a_1, a_2, \cdots be a sequence of reals. $s_n = a_1 + a_2 + \cdots + a_n$. Assume that the sequence s_{3n} is convergent. Then $\sum_n a_n$ exists $\Leftrightarrow a_n \to 0$ as $r \to \infty$.

Solution Let $\sum_n a_n$ exist then $s_{r+1} - s_r = a_r \to 0$ as $r \to \infty$ as $\{s_n\}_n$ is a cauchy sequence. Now assume that s_{3n} is convergent and $a_r \to 0$ as $r \to \infty$ then $s_{3n+k} - s_{3n} = \sum_{i=1}^k a_{3n+i} \to 0$ as $n \to \infty$ for k = 1, 2. So we have

$$\lim_{n \to \infty} s_{3n} = \lim_{n \to \infty} s_{3n+1} = \lim_{n \to \infty} s_{3n+2}.$$

Observe that $\mathbb{N} = \{3n\}_{n=0}^{\infty} \cup \{3n+1\}_{n=0}^{\infty} \cup \{3n+2\}_{n=0}^{\infty}$, this together with above will give that $\lim_{n\to\infty} s_n$ exists i.e $\sum_n a_n < \infty$.

9. Let $a_n > 0$ and $\sum_n a_n$ is divergent. Let $b_n = \frac{a_n}{1+a_n}$. Show that $\sum_n b_n$ is divergent.

Solution We have $\lim_{n\to\infty} \frac{a_n}{b_n} = 1 + \lim_{n\to\infty} a_n = l > 0$. Now for each $\epsilon > 0$ there is $M \in \mathbb{N}$ such that $\frac{a_n}{b_n} < l + \epsilon \quad \forall \ n > M$. The following inequality gives the divergent of $\sum_n b_n$ as $\sum_n a_n$ is divergent.

$$\sum_{n=M+1}^{\infty} b_n > \frac{1}{l+\epsilon} \sum_{n=M+1}^{\infty} a_n.$$

10. Let a_n , $b_n > 0$ and $a_n \to a$ with $a \neq 0$. Show that $\limsup(a_n b_n) = a \limsup b_n$.

Solution Since $a_n \to a$, so we can have $\epsilon > 0$ and $M \in \mathbb{N}$ such that $0 < a - \epsilon < a_n < a + \epsilon \quad \forall n > M$. So we get $(a - \epsilon)b_n < a_nb_n < (a + \epsilon)b_n \quad \forall n > M$, which will give

$$(a-\epsilon)\lim_{n\to\infty}\sup_{k\ge n}b_n\le \lim_{n\to\infty}\sup_{k\ge n}a_nb_n\le (a+\epsilon)\lim_{n\to\infty}\sup_{k\ge n}b_n$$

Let $0 \leq limsup \ b_n = b < \infty$ then above will give $limsup \ (a_n b_n) = ab$. If $limsup \ b_n = \infty$ then L.H.S of the above will give $limsup \ (a_n b_n) = \infty$.

11. Let x_1, x_2, \cdots be a bounded sequence and $\mathbb{B} = limsup x_n$. If $\epsilon > 0$, show that $(\mathbb{B} + \epsilon, \infty)$ can have only finitely many of the x_1, x_2, \cdots .

Solution We have $\mathbb{B} = \inf_n \sup_{k \ge n} x_n = \inf_n A_n$. Here $A_n = \sup_{k \ge n} x_n$ is a non-increasing sequence. Using definition of infimum we get for any $\epsilon > 0$ there is a n_0 such that $A_{n_0} < \mathbb{B} + \epsilon$. Thats give $\sup_{k \ge n_0} x_n < \mathbb{B} + \epsilon$, so $(\mathbb{B} + \epsilon, \infty)$ can contain at most $\{x_n\}_{n=1}^{n_0}$.