
DATE OF EXAM - September 11, 2009 Solution
SUBJECT NAME -Analysis -I - MIDTERM Exam - Semester I

1. If f, g : [a, b] −→ R are continuous functions then h = min{f, g} is also a continuous function.

Solution: For any a, b ∈ R we have min{a, b} = 1
2

[
(a+ b)− |a− b|

]
. So using this we get

h(x) =
1

2

[(
f(x) + g(x)

)
−
∣∣f(x)− g(x)

∣∣].
Now continuity of f + g and |f − g| will give the continuity of h. �

2. Let f(x) = a0+a1x+a2x
2+· · · · · · where a0, a1, a2 · · · are real numbers. Let {lim sup |an|

1
n }−1 = R0

(i) Find R0 when an = 1
n! .

(ii) Give example of a0, a1, a2 · · · such that R0 = 1, for |x| = R0, the series
∑∞
n=0 anx

n is divrgent
for x = 1 and convergent for x = −1.

Solution: (i) We have the following power series

ex = 1 +
x

1!
+
x2

2!
+
x3

3!
+ · · ·

with an = 1
n! , converges for all x ∈ R. So we get R0 =∞.

Solution: (ii) Let a0 = 0 and an = − 1
n , n ≥ 1 then we have

log(1− x) = −x− x2

2
− x3

3
− · · ·

which converges for −1 ≤ x < 1 and diverges for x = 1. �

3. Let I1 ⊃ I2 ⊃ · · · be a sequence of closed intervals with length Ir −→ 0 as r →∞. If xj ∈ Ij then
show that the sequence {x1, x2, x3, . . . } is a cauchy sequence.

Solution: We have xn+k ∈ In+k ⊂ In for any n ≥ 1 and k = 1, 2, · · · . Thus we get

|xn+k − xn| ≤ |In| as xn, xn+k ∈ In, here |In| is length of In.

So from above we get |xn+k − xn| → 0 as n →∞, for k = 1, 2, · · · . This prove that {xn}n≥1 is a
cauchy sequence. �

4. Let x1, x2, · · · be bounded sequence of reals with xj ≥ 0. If every subsequence of xn has a [further]
subsequence converging to 0 show that xn → 0.

Solution: Let assume by that xn does not convergent to 0. Then there is a ε > 0 such that for
any M ∈ N there is a xm with |xm| ≥ ε and m > M .
Now chose the subsequence {xnk

}k with |xnk
| ≥ ε with nk > Nk and NK+1 > Nk. Then this

susequence {xnk
}k does not admit any further subsequence which converges to 0. Which give the

contradiction. Hence we have xn → 0. �
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5. (a) Let an > 0,
∑
n

a2n <∞, ∂ > 1
2 . Then show that

∞∑
1

an
n∂

exists.

(b) B > 1
2 . Show that

∑
n

bn <∞ where bn =
√
n+1−

√
n

nB .

(c) If |x| < 1 show that xn → 0 as n→∞.

Solution (a) Let SN =

N∑
n=1

an
n∂

then by cauchy schwarz-inequality we have

SN ≤

√√√√ N∑
n=1

a2n

√√√√ N∑
n=1

c2n ≤

√√√√ ∞∑
n=1

a2n

√√√√ ∞∑
n=1

c2n <∞ ∀ N,

here cn = 1
n∂ . Since ∂ > 1

2 we have

∞∑
n=1

c2n <∞. The above inequality give the existence of

∞∑
1

an
n∂

.

Solution (b) Consider cn = 1

nB+1
2

then

∞∑
n=1

cn <∞ as B+ 1
2 > 1. It is easy to see that lim

n→∞

bn
cn

=
1

2
.

Now comparison test will give the converges of
∑
n

bn.

Solution (c) Let |c0| < 1 and 0 < ε < 1 (it is enough) then we have to find a N ∈ N such that
|c0|n < ε ∀ n > M . If |c0|n < ε then we have n > logε

logc0
. So if we take M = [ logεlogc0

] + 1 then we are
done. �

6. (a) Show that f : R −→ R is given by f(x) = x2 is not uniformly continuous.
(b) Let f be as in (a). Show that if x1, x2, · · · is a cauchy sequence then f(x1), f(x2), · · · is a cauchy
sequence.
(c) Give an example of uniformly continuous functions g1, g2 such that the product g1g2 is not
uniformly continuous and prove your claim.
(d) Let g : J −→ R be uniformly continuous. Show that if x1, x2, · · · is a cauchy sequence in J then
g(x1), g(x2), · · · is a cauchy sequence.
(e) Let h : (0, 1] −→ R be uniformly continuous. If yn ∈ (0, 1] and yn → 0 then {h(yn)} is
convergent and the limit is independent of the sequence y1, y2, · · · (converging to 0)
(f) Let k : J −→ R be a continuous, differentiable function and the derivative be bounded and
continuous. Show that k is uniformly continuous. Here J is a bounded or unbounded interval.

Solution (a) Let 0 < ε < 1. For any given δ > 0 set x1 = 1
δ and x2 = x1 + δ

2 then |x1−x2| = δ
2 < δ.

Now

|f(x1)− f(x2)| = 1 +
δ2

4
> 1 > ε.

The above give that f is not uniformly continuous.

Solution (b) Since {xn}n is a cauchy sequence so it is bounded, let |xn| ≤M ∀ n. Now

|f(xn)− f(xm)| = |(xn + xm)(xn − xm)| ≤ 2M |xn − xm|.

So f(x1), f(x2), · · · is a cauchy sequence.

Solution (c) Consider g1(x) = g2(x) = x is uniformly continuous (take ε = δ). But from (a) we
have g1g2(x) = x2 is not uniformly continuous.

2



Solution (d) Since {xn}n is a cauchy sequence, we have for each δ > 0 there is M ∈ N (M depends
on δ) such that |xn − xm| < δ, ∀ n,m > M . Now uniform continuity of g will give

|g(xn)− g(xm)| < ε ∀ n,m > M.

So {g(xn)}n is a cauchy sequence.

Solution (e) Since yn → 0 so {yn} is a cauchy sequence. Now from (d) we have {h(yn)} is also
cauchy in R so it is convergent.
Let {xn} ∈ (0, 1] be a another sequence such that xn → 0. Set x = lim

n→∞
h(xn) and y = lim

n→∞
h(yn).

Now for any δ > 0 we can find M ∈ N such that |xn| < δ
2 and |yn| <

δ
2 ∀ n ≥ M . Now uniform

continuity of h give that, for any ε > 0 we have

|h(xn)− h(yn)| < ε as |xn − yn| ≤ |xn|+ |yn| < δ.

Now above will give |x − y| < ε for any ε > 0 which imply x = y. So the limit of {h(yn)} is
independent of {yn}.
Solution (f) Using mean value theorem we have

|f(x)− f(y)| ≤ f ′(c)|x− y| ≤M |x− y|, c ∈ [x, y] ⊂ J, M = sup
u∈J
|f ′(u)|.

Here we take f is not a constant function. So given ε > 0 if we take δ = ε
M we get

|f(x)− f(y)| < ε whenever |x− y| < δ.

�

7. If a1, a2, · · · be a sequence of real with
∑
n |an| <∞ then

∑
n an exists.

Solution We have 0 ≤ an + |an| ≤ 2|an| so
∑
n(an + |an|) <∞. Now

N∑
n=1

an =

N∑
n=1

(an + |an|)−
N∑
n=1

|an|

Now lim
N→∞

N∑
n=1

an exists as lim
N→∞

N∑
n=1

(an + |an|) and lim
N→∞

N∑
n=1

|an| both exist. �

8. Let a1, a2, · · · be a sequence of reals. sn = a1 + a2 + · · · + an. Assume that the sequence s3n is
convergent. Then

∑
n an exists ⇔ ar → 0 as r →∞.

Solution Let
∑
n an exist then sr+1 − sr = ar → 0 as r →∞ as {sn}n is a cauchy sequence.

Now assume that s3n is convergent and ar → 0 as r → ∞ then s3n+k − s3n =
∑k
i=1 a3n+i → 0 as

n→∞ for k = 1, 2. So we have

lim
n→∞

s3n = lim
n→∞

s3n+1 = lim
n→∞

s3n+2.

Observe that N = {3n}∞n=0 ∪ {3n + 1}∞n=0 ∪ {3n + 2}∞n=0, this together with above will give that
limn→∞ sn exists i.e

∑
n an <∞.
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9. Let an > 0 and
∑
n an is divergent. Let bn = an

1+an
. Show that

∑
n bn is divergent.

Solution We have lim
n→∞

an
bn

= 1 + lim
n→∞

an = l > 0. Now for each ε > 0 there is M ∈ N such that

an
bn
< l + ε ∀ n > M . The following inequality gives the divergent of

∑
n bn as

∑
n an is divergent.

∞∑
n=M+1

bn >
1

l + ε

∞∑
n=M+1

an.

�

10. Let an, bn > 0 and an → a with a 6= 0. Show that lim sup(anbn) = a lim sup bn.

Solution Since an → a, so we can have ε > 0 and M ∈ N such that 0 < a−ε < an < a+ε ∀ n > M .
So we get (a− ε)bn < anbn < (a+ ε)bn ∀ n > M , which will give

(a− ε) lim
n→∞

sup
k≥n

bn ≤ lim
n→∞

sup
k≥n

anbn ≤ (a+ ε) lim
n→∞

sup
k≥n

bn

Let 0 ≤ limsup bn = b <∞ then above will give limsup (anbn) = ab. If limsup bn =∞ then L.H.S
of the above will give limsup (anbn) =∞. �

11. Let x1, x2, · · · be a bounded sequence and B = limsup xn. If ε > 0, show that (B + ε,∞) can
have only finitely many of the x1, x2, · · · .
Solution We have B = infn supk≥n xn = infnAn. Here An = supk≥n xn is a non-increasing
sequence.Using definition of infimum we get for any ε > 0 there is a n0 such that An0

< B + ε.
Thats give supk≥n0

xn < B + ε, so (B + ε,∞) can contain atmost {xn}n0
n=1. �
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